Designing Scientific Applications on GPUs -

Designing Scientific Applications on GPUs

4.00 Oceń książkę!

Autor: ...

Wydawnictwo: CRC Press Inc.
ISBN: 9781466571624
EAN:
Format: ...
Oprawa: twarda
Stron: 498
Data wydania: 2013-11-01
Gdzie kupić tanią książkę?
książka
285.99
Książka w Twoim domu w ciągu 48h
Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards. Understand the Benefits of Using GPUs for Many Scientific Applications Designing Scientific Applications on GPUs shows you how to use GPUs for applications in diverse scientific fields, from physics and mathematics to computer science. The book explains the methods necessary for designing or porting your scientific application on GPUs. It will improve your knowledge about image processing, numerical applications, methodology to design efficient applications, optimization methods, and much more. Everything You Need to Design/Port Your Scientific Application on GPUs The first part of the book introduces the GPUs and Nvidia's CUDA programming model, currently the most widespread environment for designing GPU applications. The second part focuses on significant image processing applications on GPUs. The third part presents general methodologies for software development on GPUs and the fourth part describes the use of GPUs for addressing several optimization problems. The fifth part covers many numerical applications, including obstacle problems, fluid simulation, and atomic physics models. The last part illustrates agent-based simulations, pseudorandom number generation, and the solution of large sparse linear systems for integer factorization. Some of the codes presented in the book are available online. "This book covers not only the knowledge of GPU and CUDA programming, but also provides successful real applications in many domains, including signal processing, image processing, physics, and artificial intelligence. The most recent research outcome and the most recent progress of GPU architectures are included, such as multi-GPU programming and GPU clusters. I believe it is a very good reference for GPU and CUDA parallel programming courses as it provides detailed illustration of the architectures of GPU, programming principles of CUDA, CUDA libraries for algebra, and a series of real applications. In addition, it will definitely contribute to the progress of research in CUDA-enabled parallel computing." -Professor Ying Liu, School of Computer and Control, University of Chinese Academy of Sciences

Książka "Designing Scientific Applications on GPUs"